Editorial for Special Issue: The Insecticidal Bacterial Toxins in Modern Agriculture

نویسندگان

  • Juan Ferré
  • Baltasar Escriche
چکیده

Agriculture has suffered enormous changes since the first human attempts to domesticate plants to obtain productive varieties which could become a constant source of food. Many developments have shaped current agricultural systems, especially those that led to extensive industrial monocultures. Concurrently with those, there are numerous other types of small scale agricultural systems with an important social and economic impact. The development of ecosystems with scarce plant varieties has favored the presence of specialized phytophagous that have evolved and adapted to plant species used in agriculture. Pest species share some biological traits, such as short generation cycles and large offsprings. Improvements in agriculture have led to a high production efficiency and the control of pests through different strategies. Modern agriculture seeks to evolve to more environmentally-friendly systems with little environmental impact and accessible to developing countries. The strategy of pest control based on the use of specific pathogenic microorganisms was already developed at the beginning of the XX century, though its extended commercial use was not achieved until relatively recently, with public awareness of the problems caused by the use of chemical synthetic insecticides. One of the most successful agents, because of its environmental friendly properties, is the pesticides based on the Gram-positive bacterium Bacillus thuringiensis. This bacterium produces protein inclusions during sporulation, known as crystals, which are toxic to some insects and nematodes. The proteins in the parasporal crystal are called Cry proteins, or Bt toxins, and are the active ingredient of B. thuringiensis based insecticides. Each Cry protein has a very specific spectrum of action against a few insect species and, therefore, each one is suitable for the control of a determined number of pest insects. Several of these proteins have been expressed in different plants of commercial interest (the so called Bt crops), which become protected from the target pests. The current challenge for Bt crops is to maintain their success with strategies aimed at increasing their efficacy and broadening their spectrum of action while, at the same time, preventing the evolution of resistant populations. Most of the Bt toxins used so far belong to the so called three-domain toxins (3D-toxins), because they have three well differentiated domains in their structure. The mode of action of these proteins has been studied for a long time, but all the steps involved are not yet fully understood. A key step leading to their specificity is the binding to receptors in the midgut of the target insects. Changes in these receptors may lead to insect resistance to all Cry proteins that share them as binding targets, conferring cross-resistance. Thus, the study of other toxins present in this bacterial species, such as those produced in the vegetative phase (called Cry1I and Vip3), is of interest to complement or replace, in the future, those that are currently in widespread use. Lepidoptera species control has been a main target for these proteins, but other types of insects, such as Coleoptera, are drawing more attention because of their strong economic impact. In fact, several studies with Bt proteins toxic to Coleoptera are being carried out with 3D-toxins (i.e., Cry3),

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis?

The use of chemical pesticides revolutionized agriculture with the introduction of DDT (Dichlorodiphenyltrichloroethane) as the first modern chemical insecticide. However, the effectiveness of DDT and other synthetic pesticides, together with their low cost and ease of use, have led to the generation of undesirable side effects, such as pollution of water and food sources, harm to non-target or...

متن کامل

Insecticidal Toxins from the Photorhabdus and Xenorhabdus Bacteria

Insect pathogens are an excellent source of novel insecticidal agents with proven toxicity. In particular, bacteria from the genera Photorhabdus and Xenorhabdus are proving to be a genomic goldmine, encoding a multitude of insecticidal toxins. Some are highly specific in their target species, whilst others are more generalist, but all are of potential use in crop protection against insect pests...

متن کامل

Biodefense

SpeciaL FocuS editoriaL 740 Virulence Volume 4 issue 8 This special issue of Virulence is concerned with new trends and developments in biodefense research with emphasis in bacterial pathogens and toxins. Although the wealth of research approaches targeting this elite class of pathogens is increasing, there is an apparent gap in translating the accumulated information into effective medical cou...

متن کامل

Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests

This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they prod...

متن کامل

In Vitro Binding Potentials of Bentonite, Yeast Cell Wall and Lactic Acid Bacteria for Aflatoxin B1 and Ochratoxin A

Background: This study intended to assess individual and combined adsorption potentials of three adsorbents (processed bentonite as an inorganic adsorbent, and cell walls of Saccharomyces cerevisiae and of the GG strain of Lactobacillus rhamnosus as organic adsorbents) for aflatoxin B1 and ochratoxin A under in vitro conditions. Methods: This study was conducted in Ferdowsi University of Mashh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017